A Facile and Versatile Synthesis of Heteropolycyclic Compounds from 4-Amino-1-azabutadienes via Friedel-Crafts Cyclization of their Heterocyclic Derivatives.

José Barluenga,* Miguel Tomás, Angel Suárez-Sobrino, and Eduardo Rubio.

Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain.

Summary: Heterocyclic systems bearing an unsaturated carbon chain and aryl groups, readily accesible from 4-amino-1-azabutadienes, undergo cyclization under mild acidic conditions to produce benzo[f]isoquinolines and benzo[h]quinazolines, as well as a new 8,13-diazasteroid derivative.

Recently we have demonstrated the utility of 4-amino-1-azabutadienes 1 in the synthesis of a great variety of nitrogen-containing heterocycles; 1 on the other hand, the availability of these azadienes and the regioselectivity of the cyclizations allowed the preparation of heterocycles with aryl substituent(s) in a specific position. Moreover, it was expected that heterocycles with unsaturated appendages would be easily available by simple C-alkylation of the azabutadiene 12 or N-alkylation of their heterocyclic derivatives. We thought that those heterocycles could undergo intramolecular Friedel-Crafts annulation to provide a versatile procedure for the synthesis of azaphenanthrene systems. In this context, polycyclic azaarenes are currently of great interest, not only in terms of their pharmacological properties, 3 but because of the influence of the presence and position (e.g., near the bay-region) of the heteroatoms on the biological activity 4 of this type of polycycle. Herein, we report our initial findings on the use of 1 for the preparation of tricyclic compounds containing one or two nitrogen atoms (Scheme 1) and a new 8,13-diazasteroid derivative (Scheme 2).

Thus, azadiene 1 ($R^3 = H$)⁵ was treated whith ⁿBuLi and allyl bromide to give 1 ($R^3 = \text{allyl}$); ² then acetylation of 1 ($R^3 = \text{allyl}$) followed by LDA-promoted ring closure gave pyridone 2, ^{1c} which cleanly afforded a high yield of benzo[f]isoquinoline derivative 3 (85%, m.p. 239-241°C) upon treatment with 85% H_3PO_4 (toluene, 60°C) and aqueous work-up.⁶ For the synthesis of polycyclic systems containing two nitrogen atoms, one of them placed in the bay-region, pyrimidinone 4 was first prepared by reaction treatment of 1 ($R^3 = \text{allyl}$) with $C1CO_2Et$, as reported earlier, ⁷ and heated with 85% H_3PO_4 (toluene, 100°C) to give the benzo[h]quinazoline 5 (85%, m.p. 205-207°C).

$$R^{2}$$
 R^{4}
 NH
 R^{4}
 NH
 R^{4}
 NH
 R^{4}
 NH
 R^{4}
 R^{4}
 NH
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{4}
 R^{5}

 $R^1 = 4\text{-MeC}_6H_4$; $R^2 = Ph$; $R^3 = CH_2CH = CH_2$; $R^4 = c Hex$

Scheme 1. Reagents and conditions: i, see ref. 1c; ii, 85% H₃PO₄, toluene, 60 °C, 12 h; iii, see ref. 7; iv, 85% H₃PO₄, toluene, 100 °C, 12 h.

Finally, owing to the considerable interest in the preparation and biological activity of azasteroids, 8 compound 6, readily available from 1 [R¹ = (CH₂)₃CH(OEt)₂; R² = R⁴ = Ph; R³ = H], 9 was allylated (n BuLi, HMPA, THF; allyl bromide, 94%) and then subjected to intramolecular cyclization (CF₃SO₃H, toluene, 100°C). Stirring overnight led to a 86:14 mixture of diasteroisomers 7a and 7b (86% isolated yield), the major isomer being easily isolated by column chromatography (silica gel, hexane-ether, 10:1). Although the actual assignament requires further studies, epimer 7a is tentatively assigned as the major stereoisomer, since the methyl group would be in an equatorial orientation in the steroid conformation. 10 , 11

Scheme 2: Reagents and conditions: i, (a) ⁿBuLi, HMPA, THF, -78°C to 10°C; then BrCH₂CH=CH₂, 20°C, 12 h; (b) CF₃SO₃H, toluene, 100°C, 12 h.

These results demonstrate the potential of using 4-amino-1-azabutadienes for the synthesis of a variety of heteropolycyclic compounds in a simple, high yield, two-step process. Studies directed to broaden the scope of the reaction as well as investigations on the utility of this procedure for the preparation of polycyclic alkaloids are in progress.¹²

Acknowledgements: We thank the Comisión Asesora de Investigación Científica y Técnica (CAICYT) for financial support, and the Ministerio de Educación y Ciencia for a predoctoral scholarship (to A.S.-S.).

References and notes

- a) J. Barluenga, M. Tomás, A. Ballesteros, V. Gotor, C. Krüger, and Y.-H. Tsay, Angew. Chem., 1986, 98, 190; Angew. Chem. Int. Ed. Engl., 1986, 25, 181; b) J. Barluenga, Bull. Soc. Chim. Belg., 1988, 97, 545; c) J. Barluenga, M. Tomás, A. Suárez-Sobrino, and V. Gotor, Tetrahedron Lett., 1988, 29, 4855.
- 2.- J. Barluenga, J. Jardón, and V. Gotor, J. Org. Chem., 1985, 50, 802.
- 3.- T. Hirota, K. Sasaki, H. Yamamoto, and T. Katsu, Heterocycles, 1987, 26, 3211.
- a) J.P. Lowe, and B.D. Silverman, Acc. Chem. Res., 1984, 17, 322; b) D. Ramesh, G.K. Kar, B.G. Chatterjee, and J.K. Ray, J. Org. Chem., 1988, 53, 212; c) S.D. Young, J.M. Wiggins, and J.R. Huff, J. Org. Chem., 1988, 53, 1114; d) S. Kumar, A. Czech, and E.J. La Voie, J. Org. Chem., 1988, 53, 1329.
- 5.- H. Hoberg, and J. Barluenga, Synthesis, 1970, 142.
- 6.- Spectroscopic data for compound 3: δ_H (300 MHz; CDCl₃) 1.15 (3H, d, J 6.5 Hz), 1.2-1.9 (10H, m), 2.5 (1H, dd, J 14.6 Hz, J 6.1Hz), 2.65 (1H, dd, J 14.6 Hz, J 4.8 Hz), 2.8 (1H, m), 2.9 (1H, m), 6.9 (1H, s), 7.1-7.4 (3H, m), 7.7 (1H, d, J 7.0 Hz), 10.8 (1H, NH, s, broad) ppm.
- 7.- J. Barluenga, M.Tomás, V. Rubio, V. Gotor, J. Chem. Soc., Chem. Commun., 1979, 675.
- a) S.V. Kessar, P. Singh, and S. K. Sharma, Tetrahedron Lett., 1982, 23, 4179; b) J.H. Rigby, and N. Balasubramanian, J. Org. Chem., 1989, 53, 224; c) G. Redeuilh, and C. Viel, Bull. Soc. Chim. Fr., 1969, 3115; d) J.R. Brooks, C. Berman, R.L. Primka, G.F. Reynolds, and G.H. Rasmusson, Steroids, 1986, 47, 1; e) R.E. Dolle, and L.I. Kruse, J. Chem. Soc., Chem. Commun., 1988, 133.
- 9.- The preparation of compound 6 has not been yet published; for its tetrahydro precursor, see J. Barluenga, M. Tomás, J. Jardón, E. Rubio, and V. Gotor, Synthesis, 1989, 230.
- 10.- Spectroscopic data for compound 7a: $\delta_{\rm C}$ (75 MHz; CDCl₃) 19.0 (q), 19.4(t), 28.7(t), 32.4(d), 40.1(t), 50.3(t), 55.0(t), 63.5(d), 67.7(d), 84.9(d), 124.3(d), 125.2(d), 126.6(d), 127.1(d), 127.3(d), 128.2(d), 136.8(s), 139.5(s), 143.2(s) ppm.
- For ¹³C n.m.r. data of analogous 8,13-diazasteroids, see: C. Verchère, D. Rouselle, and C. Viel, Org. Magn. Reson., 1978, 11, 395.
- 12.- All new compounds isolated gave satisfactory analytical figures and were characterized by spectroscopic means (i.r., mass, ¹H and ¹³C n.m.r.).